Physics A

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations

Annotation	Meaning
[Benefit of doubt given
[$+1 \times 1]$	Contradiction
$今$	Incorrect response
-1.4]	Error carried forward
\square	Follow through
	Not answered question
- い	Benefit of doubt not given
\| OH	Power of 10 error
\%	Omission mark
$\square .1$	Rounding error or repeated error
C1]	Error in number of significant figures
\cdots	Correct response
-8]	Arithmetic error
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\mathbf{I}	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Statements which are irrelevant
$\mathbf{()}$	Answers that can be accepted
$\overline{\text { ecf }}$	Words which are not essential to gain credit
AW	Underlined words must be present in answer to score a mark
ORA	Error carried forward
	Alternative wording

Highlighting is also available to highlight any particular points on the script.

2. Subject-specific Marking Instructions

CATEGORISATION OF MARKS

The marking scheme categorises marks on the MABC scheme
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: \quad These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a Cmark and the candidate does not write down the actual equation but does correct working which shows that the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: \quad These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:
If the data given in a question is to 2 sf , then allow answers to 2 or more sf.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper and annotate with SF.
Any exception to this rule will be mentioned in the Guidance.

Note about rounding errors

Only penalise rounding errors once in the entire paper and annotate with RE.
Please put ticks and crosses against all sub-sections marked AAA (9 in total) in the body of the text where the mark is given

Question			Answer	Marks	Guidance
1	(a)	(i)	potential difference (across a component)/current (in it)	B1	allow symbols if symbols defined; voltage or p.d.; allow per not over
		(ii)	read 10 V from graph $\begin{aligned} (\mathrm{R}=\mathrm{V} / \mathrm{I} & =10 / 0.04 \\ & =250(\Omega) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 0 \end{aligned}$	allow 9.8 or 9.9 ecf reading from graph
	(b)		$\begin{aligned} & \mathrm{R}=\rho \mathrm{l} / \mathrm{A} \text { or } \rho=\mathrm{RA} / \mathrm{l} \\ & \rho=250 \times 1.2 \times 10^{-3} \\ & \rho=0.30(\Omega \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	select formula mark ecf(a)(ii); a correct substitution correct answer allow 0.3
$\begin{aligned} & \mathrm{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	(c)		(graph curves so) R changes qualification: I increases faster than V increased temperature is caused by (larger) current in slice qualification: $P=I^{2} R$ as R decreases ρ decreases	B1 B1 B1 B1 B1	allow R increases or decreases allow: by calculating two values of R do not allow either of the first two marking points if reference made linking gradient and R value QWC mark; allow heating effect is caused by.... allow ' R decreases' already stated earlier in answer max 3 out of $4+$ QWC mark
			Total	10	

Question			Answer	Marks	Guidance
2	(a)	(i)	energy transfer per unit charge from chemical/other to electrical form	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	allow energy per unit charge
		(ii)	$\begin{aligned} & (\mathrm{Q}=\mathrm{It}=) 200 \times 4 \times 60 \times 60 \\ & =2.9 \times 10^{6}(\mathrm{C}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	accept 200×14400 accept 2.88×10^{6}
		(iii)	$\begin{aligned} & \mathrm{E}=\mathrm{QV}=2.88 \times 10^{6} \times 24 \\ & =6.9 \times 10^{7}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	accept 72 MJ if using 3 MC or 69.6 or 70 if using 2.9 MC
	(b)	(i)	correct symbol and polarity connected to X and Y	B1	allow one cell or more or two cells with dotted lines between
$\begin{aligned} & \mathrm{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$		(ii)	$\begin{aligned} & \mathrm{V}=30-24=6 \mathrm{~V} \\ & \mathrm{R}=\mathrm{V} / \mathrm{I}=6 / 120 \\ & =0.05(\Omega) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	evidence of the V subtraction needed do not allow use of $E=V+\mid r$; it must be IR
		(iii)	$\begin{aligned} & \mathrm{P}=\mathrm{VI}=6 \times 120 \\ & =720\left(\mathrm{~J} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	or $\mathrm{I}^{2} \mathrm{R}=120^{2} \times 0.05$ or $\mathrm{V}^{2} / \mathrm{R}=6^{2} / 0.05$
		(iv)	$\begin{aligned} & (3600-720) / 3600=2880 / 3600 \\ & =0.8 \\ & =80 \text { (\%) } \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf b(iii); using 2880 instead of 3600 gives 75\%; scores zero allow $(30-6) I / 30 I=24 / 30=0.8=80(\%)$
	(c)	(i)	$\begin{aligned} & \mathrm{t}=\mathrm{Q} / \mathrm{I}=2.88 \times 10^{6} / 120 \text { or } \mathrm{E} / \mathrm{VI}=69 \times 10^{6} /(24 \times 120) \\ & \mathrm{t}=2.4 \times 10^{4} / 3600=6.7 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	ecf (a)(iii); accept 3×10^{6} giving $2.5 \times 10^{4} \mathrm{~s}$ and 6.9 h allow ora using 7.0 h giving $\mathrm{E}=72.5 \mathrm{MJ}$
		(ii)	$\begin{aligned} & \text { power supplied }=30 \times 120 / 1000=3.6 \mathrm{~kW} \\ & \text { cost }=3.6 \times 7 \times 26=655(\mathrm{p}) \end{aligned}$	A1	ecf c(i) accept any consistent answer do not allow 2.88 kW giving 524 p unless repeated error from b(iv)
			Total	17	

Question			Answer	Marks	Guidance
3	(a)	(i)	sum of/total current into a junction equals the sum of/total current out conservation of charge	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	total vector sum of currents is zero allow 'point in a circuit' for 'junction'
		(ii)	(sum of) e.m.f.s = sum /total of p.d.s/sum of voltages in/around a (closed) loop (in a circuit) energy is conserved	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow 'in a (closed) circuit' in place of 'loop'
	(b)	(i)	current in $750 \Omega=0.020 \mathrm{~A}$	A1	allow 20 mA or 0.02 A
		(ii)	V across $750 \Omega=0.02 \times 750=15 \mathrm{~V}$	A1	ecf b(i)
		(iii)	$\begin{aligned} & \mathrm{R}_{1}=(45-15) / 0.03=1000 \Omega \\ & \mathrm{R}_{2}=15 / 0.01=1500 \Omega \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	ecf b(ii)
	(c)	(i)	correct symbol connected in circuit	B1	2 arrows pointing towards the resistor at about 45° with or without a circle; arrows outside circle if drawn
A		(ii)	total R falls so I in circuit/in R_{1} increases so V across R_{1} increases and V across 750Ω falls	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	accept sum of R's in parallel falls R_{1} is fixed so V across R_{1} increases so V across R's in parallel falls (so V across 750Ω falls) or correct potential divider argument
		(iii)	in series with LDR ammeter (A) in parallel with LDR voltmeter (V) 50 mA 20 V	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	allow voltmeter in parallel with $\mathrm{R}_{1}(30-50 \mathrm{~V})$ allow multimeter connected as A (series) or V (parallel) and a correct unit for range given allow 20 to 100 mA ; or 15 to 50 V
			Total	15	

Question			Answer	Marks	Guidance
4	(a)	(i)	is a transfer of energy as a result of oscillations (of the source/medium/particles through which energy is travelling)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	accept carries/AW accept without the transfer of the medium/particles/matter
		(ii)	a progressive wave transfers energy a progressive wave transfers shape/information either every point on a progressive wave has the same amplitude or every point on a progressive wave oscillates all points on a progressive wave have different phase (in one λ)	B1 B1 B1 B1	or a stationary wave traps energy in pockets/AW or a stationary wave does not transfer shape/information or a stationary wave has nodes and antinodes or in a stationary wave some points do not move (nodes) or all points in a stationary wave between nodes are in phase or in adjacent loops are in antiphase max 2 marks
A	(b)	(i)	shape: sinusoidal and only 2 cycles amplitude constant at 0.03 m (y-axis labelled) period 0.2 s (x -axis labelled to 0.4 s) phase: cosine curve	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	one correct label of 0.03 m on y -axis is enough to score mark
			X W W and X	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
		(iii)	Y vertically up Z vertically down	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	award 1 mark if directions of both reversed
	(c)		v has increased by 2 so (λ has increased by same factor) new $\lambda=0.60 \times 2=1.2(\mathrm{~m})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	correct reasoning correct answer
$\begin{aligned} & \mathrm{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	(d)		f has increased by 2 so point W has to move same distance in half the time/double the distance in the same time therefore speed is doubled to $1.9\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	M1 A1	N.B. zero marks for using $v=\mathrm{f} \lambda$ as this is the wave velocity not the particle velocity allow $v=2 \pi f A$ or v proportional to $f($ mark BOD) accept $1.88\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
			Total	17	

Question			Answer	Marks	Guidance
5	(a)	(i)	when 2 or more waves meet (at a point) the (resultant) displacement is equal to the (vector) sum of the displacements of each wave	B1 B1	accept alternative words which mean meet not collide, interfere or superpose not amplitude
		(ii)	travel through a vacuum/ at c (in a vacuum)	B1	allow caused by oscillating charges; consist of electric and magnetic fields/oscillations
		(iii)	only transverse waves can be polarised	B1	accept sound waves are longitudinal/not transverse
A	(b)	(i)	the waves interfere/superpose producing a stationary wave (with nodes and antinodes) the resultant signal is zero at a node distance from max (antinode) to zero (node) is $\underline{\lambda / 4=0.75 \mathrm{~cm}}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	constructive interference produces maximum (at R) or signals in phase/zero path diff. of waves (at R) destructive interference produces minimum/zero signal or out of phasel $1 / 2 \lambda$ or phase difference of $\pi / 2$ is caused by 0.75 cm shift maximum of $3 / 4$ if nodes and antinodes interchanged QWC mark in bold
A		(ii)	emitted waves are polarised (in vertical plane) detected signal from T_{2} falls to zero (when T_{2} is rotated by 90°) aerial only receives signal from one transmitter (T_{1}, signal is halved) (no change in detected signal as) no interference/signals at right angles to each other/AW	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	plane of oscillation of waves from T_{2} changes/AW max 3 marks from 4 marking points
			Total	11	

Question			Answer	Marks	Guidance
6	(a)	(i)	emission of electron(s) from a metal (surface) when photon(s)/ light/uv/em radiation are incident (on surface)	B1	allow singular electron and absorption of photon
		(ii)	energy to accelerate/move an electron through a p.d. of 1 V/AW	B1	not $1.6 \times 10^{-19} \mathrm{~J}$
		(iii)	$5.0 \times 1.6 \times 10^{-19}=8.0 \times 10^{-19} \mathrm{~J}$	B1	allow 8 for 8.0; no mark if unit incorrect
	(b)	(i)1	the minimum energy required to release an electron from the surface of the metal	B1	
		(i)2	$\begin{aligned} & \varphi=8.0 \times 10^{-19}-1.1 \times 10^{-19} \\ & =6.9 \times 10^{-19} \mathrm{~J} \end{aligned}$	B1	no mark if unit incorrect unless unit in a(iii) incorrect
		(ii)1	$\begin{aligned} & 1 / 2 m v^{2}=1.1 \times 10^{-19} \\ & v^{2}=2.2 \times 10^{-19} / 9.11 \times 10^{-31}\left(=2.4 \times 10^{11}\right) \\ & v=4.9 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	accept ora substitute 5×10^{5} to find $\mathrm{E}=1.1 \times 10^{-19}$
		(ii)2	$\begin{aligned} & \lambda=\mathrm{h} / \mathrm{mv} \\ & =6.63 \times 10^{-34} / 9.11 \times 10^{-31} \times 4.9 \times 10^{5} \\ & =1.5 \times 10^{-9}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept 1.46×10^{-9} if using $v=5 \times 10^{5}$
A	(c)	(i)	Electrons behave as waves/diffract (observable because) gaps/atoms are of similar wavelength to electrons regular/ordered pattern of atoms/atoms act as a grating/AW allowing interference to produce pattern on screen/AW rings occur because atomic 'crystals' at all possible orientations to beam/AW	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow graphite for atoms max 3 from 5 marking points
		(ii)	wavelength is too large to produce a diffraction pattern/electrons not travelling fast enough/AW	B1	ecf (b)(ii)2; e.g. for AW: wavelength is about 10 times atomic spacing or wavelength is different to spacing
			Total	14	

Question			Answer	Marks	Guidance
7	(a)		light from the two sources must be/slits is coherent only possible to produce constant phase difference using a single source	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow 'has a constant phase difference' for 'is coherent' allow separate light sources are not coherent/do not have a constant phase difference
(b)			at D: 180° or m rad at B: 0 or 360° or $2 \pi \mathrm{rad}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	max 1 out of 2 if unit omitted except on zero allow ${ }^{\text {c }}$ as symbol for rad
-	(c)	(i)	$2.0 \times 10^{-3}(\mathrm{~m})$	B1	allow 1 SF and 2 mm ; allow 1.8 or 1.9 mm , only 2 SF
		(ii)	$\begin{aligned} & \lambda=\mathrm{ax} / \mathrm{D} \\ & =0.4 \times 10^{-3} \times 2.0 \times 10^{-3} / 1.5 \\ & =5.3(3) \times 10^{-7}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	select formula ecf c(i); substitute answer
	(d)		$\begin{aligned} & 2 \lambda \\ & 1060(\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ecf c(ii); allow 1000 for 5×10^{-7} allow 1066, 1067, 1070,1100
$\begin{aligned} & \hline \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	(e)	(i)	$\begin{aligned} & E=\left(8.7 \times 10^{-19}-5.0 \times 10^{-19}\right)=3.7 \times 10^{-19}(\mathrm{~J}) \\ & \text { select } E=h c / \lambda \\ & E=6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 5.3 \times 10^{-7} \\ & =3.73 \times 10^{-19}(\mathrm{~J}) \quad\left[\operatorname{or} 3.98 \times 10^{-19} \text { if using } 5.0 \times 10^{-7}\right] \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{C} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	readings from diagram must see substitution ora substitute for E and find λ calculation ora $5.4 \times 10^{-7}(\mathrm{~m})$ N.B. the B mark can be awarded inside the calculation only for the ora method
		(ii)	\mathbf{X} in infra-red/ir \mathbf{Z} in ultra-violet/uv	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	allow 1 mark for answers reversed
			Total	16	

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge
CB1 2EU
OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

